Сегодня мы расскажем о том, как определить пропускную способность сети между площадками при использовании кластеров vSAN HCI и кластеров vSAN Max в конфигурации Stretched Cluster.
В растянутом кластере два домена отказоустойчивости данных содержат один или несколько хостов, а третий домен отказоустойчивости содержит виртуальный модуль Witness для определения доступности сайтов данных. Далее каждый домен отказоустойчивости данных мы будем называть сайтом. Конфигурации растянутого кластера vSAN могут распространяться на разные расстояния, при условии что соблюдаются требования по пропускной способности (bandwidth) и задержке (latency).
Минимально поддерживаемая пропускная способность и latency между сайтами
Пропускная способность, которая требуется между сайтами, в большой степени зависит от объема операций ввода-вывода (I/O), который генерируют рабочие нагрузки, но будут влиять и другие факторы, такие как используемая архитектура (vSAN ESA или OSA), размер кластера и сценарии обработки сбоев. Ниже указаны минимально поддерживаемые значения, но рассчитанные оценки для конкретной инфраструктуры могут привести к требованиям по пропускной способности, превышающим указанные минимумы.
Приведенные ниже формулы помогут оценить необходимую пропускную способность сети между сайтами. Предполагается, что два сайта данных географически расположены достаточно близко друг к другу, чтобы соответствовать требованиям по задержке.
Понимание активности I/O, соотношения чтения и записи и размеров I/O
Рабочие нагрузки состоят из нескольких характеристик. Не только количество активности I/O значительно различается от нагрузки к нагрузке, но чтения и записи часто происходят с разными скоростями и разными размерами I/O. С целью предоставления простой формулы для расчета мы будем использовать следующие переменные для расчета оценочной пропускной способности связи между сайтами для растянутого кластера (ISL):
Скорость I/O всех команд чтения и записи, измеряемая в IOPS
Соотношение чтения/записи (например, 70/30)
Средний размер I/O, измеряемый в KB
Пропускная способность - это измерение на основе скорости, что означает, как много данных передается за определенный период времени. В отличие от измерения неактивных данных, где оно принимает форму байтов, килобайтов и т. д., измерение данных в процессе передачи по сети выражается в битах (b), килобитах (Kb), мегабитах (Mb) или гигабитах (Gb), и период времени - "в секунду" (ps). Обсуждая скорости, мы должны помнить о конвертации байтов в биты.
Давайте используем простой пример, где общий профиль I/O требует 100 000 I/O в секунду (IOPS), в среднем 8 KB каждый, где 70% IOPS - это чтение, и 30% - запись, в растянутой конфигурации. В этом сценарии запись I/O (30 000 IOPS в среднем 8 KB каждый) будет равна 240 000 Kbps или 240 Mbps. Это будет оценкой пропускной способности ISL, необходимой для этого профиля.
Простейший, но потенциально менее точный способ оценки требований к пропускной способности - это просто использовать входные данные, представляющие общие потребности кластера. Если кто-то использует формулу для расчета отдельных рабочих нагрузок в кластере, сумма этих расчетов предоставит результирующие требования к пропускной способности. Возможно, вы захотите выделить гораздо больше минимального рассчитанного количества, так как рабочие нагрузки со временем неизбежно становятся более ресурсоемкими.
Формулы для расчета оценок пропускной способности указаны ниже, они привязаны к используемой архитектуре: vSAN OSA или vSAN ESA. С введением архитектуры vSAN Express Storage (ESA) появляются все новые возможности по обеспечению производительности хранилища на совершенно новом уровне. Поэтому при использовании ESA рекомендуется тщательно отслеживать использование ISL, чтобы убедиться, что есть достаточная пропускная способность, необходимая для того, чтобы рабочие нагрузки не были ограничены со стороны ISL. Для дополнительной информации см. статью: "Использование vSAN ESA в топологии растянутого кластера".
Формулы расчета пропускной способности для vSAN ESA
Трафик репликации от I/O гостевой ВМ - это доминирующий тип трафика, который мы должны учесть при оценке необходимой пропускной способности для трафика межсайтовой связи (ISL). У растянутых кластеров vSAN ESA трафик чтения по умолчанию обслуживается сайтом, на котором находится ВМ. Требуемая пропускная способность между двумя сайтами данных (B) равна пропускной способности записи (Wb) * множитель данных (md) * множитель ресинхронизации (mr) * коэффициент сжатия (CR).
Расчет пропускной способности для ISL, обслуживающего растянутый кластер vSAN с использованием ESA, отличается от формулы, используемой для OSA. vSAN ESA сжимает данные до их репликации между сайтами. В результате ESA уменьшает использование пропускной способности ISL, эффективно увеличивая его возможности для передачи большего количества данных.
Чтобы учесть это в расчете в топологии, использующей ESA, формула учитывает оценочное соотношение сжатия сохраненных данных. Давайте рассмотрим следующий пример, где мы оцениваем экономию в 2 раза благодаря использованию сжатия в vSAN ESA. Мы используем простое значение "2x" (также называемое 2:1 или 50%) для простоты. Фактические коэффициенты сжатия будут зависеть от данных, хранящихся в вашей среде. Пример 2:1 - это не предположение о том, что вы на самом деле можете увидеть в своей среде.
Преобразуйте это в процент от исходного размера, разделив конечный размер на начальный размер. Это даст, например, результат ".50".
Умножьте окончательное рассчитанное значение из описанной в этой статье формулы на ".50".
В результате формула будет выглядеть так:
B = Wb * md * CR * mr * CR
Как отмечалось выше, коэффициенты сжатия часто могут быть представлены разными способами, чтобы выразить экономию места.
Например:
Сжатие, выраженное в соотношении. [начальный размер]:[конечный размер]. Соотношение сжатия 2:1 указывает на то, что данные будут сжаты до половины своего исходного размера.
Сжатие, выраженное в виде множителя экономии. Соотношение сжатия 2x указывает на то, что данные будут сжаты до половины своего исходного размера. Это то, что отображается в представлении ёмкости кластера vSAN.
Сжатие, выраженное в процентах от исходного размера. Значение сжатия 50% (или, .50) указывает на то, что данные будут сжаты до половины своего исходного размера.
Примеры между сайтами (для vSAN ESA)
Рабочая нагрузка 1
С примером рабочей нагрузки в 10 000 записей в секунду на рабочую нагрузку vSAN со средним размером записи 8 KB потребуется 80 МБ/с или 640 Мбит/с пропускной способности. Предположим, что данные имеют коэффициент сжатия 2x.
B = 640 Мбит/с * 1.4 * 1.25 * .50 = 560 Мбит/с.
Учитывая требования к сети vSAN, требуемая пропускная способность составляет 560 Мбит/с.
Рабочая нагрузка 2
В другом примере, 30 000 записей в секунду, 8KB записи, потребуется 240 MB/s или 1 920 Мбит/с пропускной способности. Предположим, что данные имеют коэффициент сжатия 2x.
B = 1,920 Мбит/с * 1.4 * 1.25 * .50 = 1,680 Мбит/с или примерно 1,7 Гбит/с.
Требуемая пропускная способность составляет примерно 1,7 Гбит/с.
Рабочие нагрузки редко состоят только из чтений или записей, и обычно включают общее соотношение чтения к записи для каждого варианта использования. Используя общую ситуацию, когда общий профиль I/O требует 100 000 IOPS, из которых 70% являются записью, а 30% чтением, в растянутой конфигурации, IO записи - это то, на что рассчитана пропускная способность межсайтовой связи. С растянутыми кластерами vSAN, трафик чтения по умолчанию обслуживается сайтом, на котором находится ВМ.
Формулы расчета пропускной способности для vSAN OSA
Как и в растянутых кластерах с использованием ESA, трафик репликации от I/O гостевой ВМ в растянутом кластере с использованием OSA является доминирующим типом трафика, который мы должны учитывать при оценке необходимой пропускной способности для трафика межсайтовой связи (ISL). В растянутых кластерах vSAN OSA трафик чтения по умолчанию обслуживается сайтом, на котором размещена ВМ. Требуемая пропускная способность между двумя данными сайтами (B) равна пропускной способности записи (Wb) * множитель данных (md) * множитель ресинхронизации (mr), или:
B = Wb * md * mr
Множитель данных состоит из накладных расходов на трафик метаданных vSAN и различных связанных операций. VMware рекомендует использовать множитель данных 1.4. Множитель ресинхронизации включен для учета событий ресинхронизации. Рекомендуется выделять пропускную способность по верхней границе требуемой пропускной способности для событий ресинхронизации. Для учета трафика ресинхронизации рекомендуются дополнительные 25%.
Планируйте использование vSAN ESA для всех новых кластеров vSAN. Эта архитектура быстрее и эффективнее, чем vSAN OSA, и, зачастую, уменьшает количество хостов, необходимых для того же объема рабочих нагрузок. Формула для vSAN OSA остается актуальной для тех, у кого уже есть установки vSAN OSA.
Требования к пропускной способности между Witness и сайтом данных
В топологии растянутого кластера хост-машина Witness просто хранит компоненты, состоящие из небольшого объема метаданных, которые помогают определить доступность объектов, хранящихся на сайтах с данными. В результате сетевой трафик, отправляемый на сайт для этой машины, довольно мал по сравнению с трафиком между двумя сайтами с данными через ISL.
Одной из наиболее важных переменных является объем данных, хранящихся на каждом сайте. vSAN хранит данные в виде объектов и компонентов. Она определяет, сколько компонентов нужно для данного объекта, и где они должны быть размещены по всему кластеру, чтобы поддерживать устойчивость данных в соответствии с назначенной политикой хранения.
Архитектура vSAN ESA обычно использует больше компонентов, чем OSA. Это следует учитывать при расчете потенциально необходимой пропускной способности для машины Witness.
Обязательно выберите правильный размер хоста vSAN Witness. При развертывании предлагается четыре размера машины (Tiny, Medium, Large и Extra Large), каждый из которых предназначен для размещения разных размеров сред. Посмотрите статью "Deploying a vSAN Witness Appliance" для получения дополнительной информации.
Формулы расчета пропускной способности Witness для vSAN ESA и OSA
Сетевое взаимодействие сайтов с Witnessn состоит исключительно из метаданных, что делает запросы к сетевым ресурсам Witness гораздо более легковесными, что отражается в поддерживаемых минимальных требованиях к пропускной способности и задержке.
Поскольку формула для оценки необходимой пропускной способности Witness основана на количестве компонентов, ее можно использовать для расчета растянутых кластеров, использующих OSA или ESA. Поскольку ESA обычно использует больше компонентов на объект (возможно, в 2-3 раза больше) по сравнению с OSA, следует учитывать большее количество компонентов на ВМ при использовании архитектуры на базе ESA.
Базовая формула
Требуемая пропускная способность между Witness и каждым сайтом равна ~1138 Б x Количество компонентов / 5с
1138 Б x Кол-во компонентов / 5 секунд
Значение 1138 Б происходит от операций, которые выполняются, когда предпочтительный сайт выходит из строя, и второстепенный сайт берет на себя владение всеми компонентами. Когда основной сайт выходит из строя, второстепенный сайт становится лидером. Witness отправляет обновления новому лидеру, после чего новый лидер отвечает Witness, по мере обновления владения. Требование в 1138 Б для каждого компонента происходит из сочетания полезной нагрузки от Witness к резервному агенту, за которым следуют метаданные, указывающие, что предпочтительный сайт не работает. В случае отказа предпочтительного сайта, связь должна быть достаточно хорошей, чтобы позволить изменение владения кластером, а также владение всеми компонентами в течение 5 секунд.
Примеры пропускной способности Witness к сайту (OSA)
Нагрузка 1
Если ВМ состоит из:
3 объектов
Параметр допустимого числа отказов (FTT=1)
Приблизительно 166 ВМ с этой конфигурацией потребовало бы, чтобы Witness содержал 996 компонентов (166 ВМ * 3 компонента/ВМ * 2 (FTT+1) * 1 (Ширина полосы)). Чтобы успешно удовлетворить требования пропускной способности Witness для общего числа 1 000 компонентов на vSAN, можно использовать следующий расчет:
Преобразование байтов (Б) в биты (б), умножьте на 8:
В = 1138 Б * 8 * 1 000 / 5с = 1 820 800 бит в секунду = 1.82 Мбит/с
VMware рекомендует добавить безопасный запас в 10% и округлить вверх.
B + 10% = 1.82 Мбит/с + 182 Кбит/с = 2.00 Мбит/с
Таким образом, с учетом безопасного запаса в 10%, можно утверждать, что для каждых 1 000 компонентов подходит канал 2 Мбит/с.
Нагрузка 2
Если ВМ состоит из:
3 объектов
FTT=1
Stripe с параметром 2
Приблизительно 1 500 ВМ с этой конфигурацией потребовало бы хранения 18 000 компонентов на Witness. Чтобы успешно удовлетворить требования пропускной способности Witness для 18 000 компонентов на vSAN расчет будет таким:
B = 1138 Б * 8 * 18 000 / 5с = 32 774 400 бит в секунду = 32.78 Мбит/с
B + 10% = 32.78 Мбит/с + 3.28 Мбит/с = 36.05 Мбит/с
Используя общее уравнение 2 Мбит/с на каждые 1 000 компонентов, (NumComp/1000) X 2 Мбит/с, можно увидеть, что 18 000 компонентов действительно требует 36 Мбит/с.
Пропускная способность Witness для конфигураций с 2 узлами (OSA)
Пример удаленного сайта 1
Рассмотрим пример 25 ВМ в конфигурации с 2 узлами, каждая с виртуальным диском 1 ТБ, защищенные при FTT=1 и Stripe Width=1. Каждый vmdk будет состоять из 8 компонентов (vmdk и реплика) и 2 компонентов для пространства имен ВМ и swap-файла. Общее количество компонентов составляет 300 (12/ВМx25ВМ). С 300 компонентами, используя правило (300/1000 x 2 Мбит/с), требуется пропускная способность 600 кбит/с.
Пример удаленного сайта 2
Рассмотрим другой пример 100 ВМ на каждом хосте, с таким же ВМ выше, с виртуальным диском 1 ТБ, FTT=1 и SW=1. Общее количество компонентов составляет 2 400. Используя правило (2 400/1000 x 2 Мбит/с), требуется пропускная способность 4.8 Мбит/с.
Вот так и рассчитывается пропускная способность для разных рабочих нагрузок и конфигураций в среде vSAN. Понимание этих метрик и формул поможет в проектировании и развертывании решений vSAN, которые обеспечивают оптимальную производительность и надежность.