Там приведены результаты тестирования производительности рабочих нагрузок обучения AI/ML на платформе виртуализации VMware vSphere с использованием нескольких графических процессоров NVIDIA A100-80GB с поддержкой технологии NVIDIA NVLink. Результаты попадают в так называемую "зону Голдилокс", что означает область хорошей производительности инфраструктуры, но с преимуществами виртуализации.
Результаты показывают, что время обучения для нескольких тестов MLPerf v3.0 Training1 увеличивается всего от 6% до 8% относительно времени тех же рабочих нагрузок на аналогичной физической системе.
Кроме того, в документе показаны результаты теста MLPerf Inference v3.0 для платформы vSphere с графическими процессорами NVIDIA H100 и A100 Tensor Core. Тесты показывают, что при использовании NVIDIA vGPU в vSphere производительность рабочей нагрузки, измеренная в запросах в секунду (QPS), составляет от 94% до 105% производительности на физической системе.
vSphere 8 и высокопроизводительная виртуализация с графическими процессорами NVIDIA и NVLink.
Партнерство между VMware и NVIDIA позволяет внедрить виртуализированные графические процессоры в vSphere благодаря программному слою NVIDIA AI Enterprise. Это дает возможность не только достигать наименьшего времени обработки для виртуализированных рабочих нагрузок машинного обучения и искусственного интеллекта, но и использовать многие преимущества vSphere, такие как клонирование, vMotion, распределенное планирование ресурсов, а также приостановка и возобновление работы виртуальных машин.
VMware, Dell и NVIDIA достигли производительности, близкой или превышающей аналогичную конфигурацию на физическом оборудовании со следующими настройками:
Dell PowerEdge R750xa с 2-мя виртуализированными графическими процессорами NVIDIA H100-PCIE-80GB
Для вывода в обеих конфигурациях требовалось всего 16 из 128 логических ядер ЦП. Оставшиеся 112 логических ядер ЦП в дата-центре могут быть использованы для других задач. Для достижения наилучшей производительности виртуальных машин во время обучения требовалось 88 логических ядер CPU из 128. Оставшиеся 40 логических ядер в дата-центре могут быть использованы для других активностей.
Производительность обучения AI/ML в vSphere 8 с NVIDIA vGPU
На картинке ниже показано сравнительное время обучения на основе тестов MLPerf v3.0 Training, с использованием vSphere 8.0.1 с NVIDIA vGPU 4x HA100-80c против конфигурации на физическом оборудовании с 4x A100-80GB GPU. Базовое значение для физического оборудования установлено как 1.00, и результат виртуализации представлен в виде относительного процента от базового значения. vSphere с NVIDIA vGPUs показывает производительность близкую к производительности на физическом оборудовании, где накладные расходы на виртуализацию составляют 6-8% при обучении с использованием BERT и RNN-T.
Таблица ниже показывает время обучения в минутах для тестов MLPerf v3.0 Training:
Результаты на физическом оборудовании были получены Dell и опубликованы в разделе закрытых тестов MLPerf v3.0 Training с ID 3.0-2050.2.
Основные моменты из документа:
VMware vSphere с NVIDIA vGPU и технологией AI работает в "зоне Голдилокс" — это область производительности для хорошей виртуализации рабочих нагрузок AI/ML.
vSphere с NVIDIA AI Enterprise, используя NVIDIA vGPUs и программное обеспечение NVIDIA AI, показывает от 106% до 108% от главной метрики физического оборудования (100%), измеренной как время обучения для тестов MLPerf v3.0 Training.
vSphere достигла пиковой производительности, используя всего 88 логических ядер CPU из 128 доступных ядер, оставив тем самым 40 логических ядер для других задач в дата-центре.
VMware использовала NVIDIA NVLinks и гибкие группы устройств, чтобы использовать ту же аппаратную конфигурацию для обучения ML и вывода ML.
vSphere с NVIDIA AI Enterprise, используя NVIDIA vGPU и программное обеспечение NVIDIA AI, показывает от 94% до 105% производительности физического оборудования, измеренной как количество обслуживаемых запросов в секунду для тестов MLPerf Inference v3.0.
vSphere достигла максимальной производительности вывода, используя всего 16 логических ядер CPU из 128 доступных, оставив тем самым 112 логических ядер CPU для других задач в дата-центре.
vSphere сочетает в себе мощь NVIDIA vGPU и программное обеспечение NVIDIA AI с преимуществами управления дата-центром виртуализации.
Более подробно о тестировании и его результатах вы можете узнать из документа.